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1. Introduction

Instructional videos are abundant on the internet and

serve as primary source of information for accomplishing

non-trivial tasks such as “replacing a phone battery”, “rolling

sushi” or “grinding calligraphy ink” (Figure 1). As the

popularity of instructional video indicates, the visual image

in addition to the linguistic narrative is often decisive for

successful completion of complex tasks. Understanding

the visual stream of instructional video can benefit robotics

research (e.g. through imitation learning) and decomposing

complex tasks into primitive subtasks. In this abstract we

focus on this visual stream. Specifically, we propose to model

the salient motion in instructional videos by measuring the

time-varying first-order differentials of the flow field. This

approach is an application of our conference paper [3].

Existing work on learning from instructional videos [1, 2]

leverages the supervision of the spoken narrative available

through YouTube’s automatic speech recognition system.

Alayrac et al. [1] propose to learn primitive subtasks for

instructional video classes through unsupervised learning.

Specifically, textual and visual concepts are independently

clustered followed by a joint sequence alignment. Huang et al.

[2] focus on instructional cooking videos. Their unsupervised

approach combines linguistic and visual input to temporally

link entities (e.g. “dressing”) to the action that produced

it (e.g. “mix vinegar”). Those approaches emphasize on

the unsupervised alignment of linguistic and visual streams

rather than focusing on the visual representation of motion.

Focusing on the visual representation, we note that in

comparison to other computer vision tasks (e.g. image clas-

sification, action recognition and video segmentation), the

context of the scene is often irrelevant for understanding the

instructions. We believe that in order to understand instruc-

tional video, successful approaches need to emphasize on

fine-grained motion patterns, object interaction and proce-

dural knowledge parsing. Here, we focus on modeling the

motion by deriving primitive motion types from the 3D flow

field and then measuring the time-varying observed flow in

the image plane.

Figure 1. Examples of instructional videos found on YouTube.

Top: replacing a phone battery. Center: preparing Maki sushi rolls.

Bottom: grinding Chinese calligraphy ink. Each instructional video

is a chain of primitive motion types; identifying these can aid the

visual understanding of such videos.

2. Proposed Method

The perceived motion in instructional videos exists on the

2D image plane but the correct starting point for modeling

the motion is the 3D world. For a moment in time t, we

denote the 3D flow field tied to an object by Ft (x). The flow

field can be decomposed into its directional components:

Ft = (Fx, Fy, Fz). From differential geometry, we have the

three operators acting on the flow field:
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The equations define the gradient, divergence and curl of

the flow field [4]. Three basic 3D-motion types emerge

depending on the values of divergence and curl as follows:

translation: ∇ ×Ft = 0, ∇ ·Ft = 0

rotation: ∇ ×Ft , 0, ∇ ·Ft = 0

expansion: ∇ ×Ft = 0, ∇ ·Ft , 0.
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(a) Flow Abstractions in 3D
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(b) Examples in Real Life

Figure 2. 3 × 3 Cartesian table of the motion type times the motion continuity. Following from the differential operators acting on the flow,

these are the basic cases of (periodic) motion in 3D. The examples are: escalator, leaping frog, bouncing ball, pirouette, tightening a bolt,

laundry machine, inflating a tire, inflating a balloon and a breathing anemone. Figure originally appeared in [3].

In addition, the temporal gradient of the time-varying 3D

flow field results in three motion continuities: constant,

oscillatory and intermittent motion. Jointly, the motion types

and motion continuities organize in a 3 × 3 Cartesian table

of fundamental motion cases (Figure 2). For 2D video, the

3D flow field is projected on the image plane based on the

observer’s viewpoint. Considering the two distinct viewpoint

extremes (frontal and side view), this gives rise to 18 atomic

motion types to be measured with divergence, gradient and

curl and operators (see [3] for an illustration of these cases).

Instructional videos typically consist of an ordered chain

of primitive subtasks. Each of these primitive subtasks will

produce a characteristic flow field to be measured using

the first-order differential operators. Specifically, in [3] we

propose to segment the foreground motion and obtain a

max-pooled representation of the differential measures using

Gaussian derivative filers over the foreground mask. In effect,

the video is represented by time-varying signals that encode

the presence of primitive motion types. The motion types

can be related to instructional subtasks and their ordering

over time contains valuable information for understanding

the instructional video. To distill repeated motion or transient

phenomena from the signals one can rely on the continuous

wavelet transform, correlation-based methods or recurrent

neural networks.

An example, in the context of understanding instruc-

tional video, is the consecutive measurements of oscillatory

translation (“cutting”) and constant rotation (“stirring”) that

establishes a strong cue for the task “making soup”. The

successive identification of those primitive actions to be

measured by the divergence and gradient pairs underlies our

proposed approach to a visual understanding of instructional

video. One challenge that remains is learning the ordering of

primitive subtasks collectively define the full instruction set.

To alleviate this difficulty, [1] assumes that each task has the

same order of primitive subtasks. In practice, this assumption

does not hold as tasks can be completed in many different

ways and steps may be omitted. Learning complex ordering

seems feasible given the vast number of videos available with

weak supervision in the form of textual narrative obtained

through automatic speech recognition.

3. Conclusion

In this brief abstract we have proposed a method for visual

identification of primitive subtasks in instructional video.

Specifically, we propose to represent motion by measuring

the divergence, gradient and curl of the flow field. On top

of this, the order in the chain of primitive subtasks can be

associated with a complete tasks through temporal modeling.
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